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Abstract

We introduce explicit volume-preserving and symplectic integrators for the case of generalized trigonometric

polynomial flows. The method is demonstrated using the Arter flow, and computational trials are conducted using a

4-dimensional vector field.
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1. Introduction

The growing interest in structure-preserving numerical integrators for systems of ordinary differential

equations has recently been espoused by many authors, including McLachlan and Quispel [1] and Hairer

et al. [23]. The need for exact preservation of features such as first integrals [2–6], symmetries [7,9], phase-

space volume [11,12] and other structural features is well understood, and integrators preserving them are

collectively called ‘‘geometric integrators’’. Many types of geometric integrators have been shown to have
superior error-growth behaviour, with linear error growth for (certain) periodic and quasi-periodic prob-

lems, rather than the quadratic growth given by most standard, non-geometric integrators (see [18], for

example).

A feature common to most of these geometric integrators is that they result in a system of implicit

difference equations. There are some exceptions to this, for example many splitting methods [10,26], the

explicit partitioned Runge–Kutta methods, and Runge–Kutta–Nystr€oom methods discussed by Sanz-
Serna and Calvo [13]. Explicit methods offer the possibility of faster execution, along with the absence of
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the need to ensure convergence of the implicit loop needed at each step of an implicit method. In a

calculation where extremely long run-times are required, such as in the case of astronomical models,

a method that offers desirable geometric features plus higher speed and accuracy is clearly worth

considering.

Our principal interest here relates to the construction of volume-preserving integrators for source-free

vector fields, of particular importance in fluid dynamics [14]. Although two general methods for this

problem are known, they are both implicit [8,11,12,15,17]. In this paper, we construct explicit integrators

for a large subclass of source-free vector fields.
In this paper, we are concerned with source-free vector fields that are polynomial functions of trigo-

nometric functions of the field variables, cf. also [24]. In this case we show that a unique splitting can be

constructed in which the individual vector fields are source free and explicitly exactly integrable. The exact

solution for each field is given by the explicit Euler method, from which higher order integrators can be

constructed, e.g., via the generalized Yoshida method [19,20].

2. An example: the Arter flow

Before we present our method in full generality, we first demonstrate it on an example, the 3-dimensional

Arter flow of fluid dynamics

d

dt

x
y
z

0
@

1
A ¼ vðx; y; zÞ; ð1Þ

where the vector field vðx; y; zÞ is given by

vðx; y; zÞ ¼
� sin x cos y cos zþ b sin 2x cos 2z
� cos x sin y cos zþ b sin 2y cos 2z

2 cos x cos y sin z� bðcos 2xþ cos 2yÞ sin 2z

0
@

1
A ð2Þ

and b is a parameter. It is easy to check that vðx; y; zÞ is divergence free.
Using repeated applications of the product formulae

sin a cos b ¼ 1
2
sinða þ bÞ þ 1

2
sinða � bÞ;

sin a sin b ¼ � 1
2
cosða þ bÞ þ 1

2
cosða � bÞ;

cos a cos b ¼ 1
2
cosða þ bÞ þ 1

2
cosða � bÞ

ð3Þ

the vector field v can be split as follows:

v ¼ v1 þ v2 þ � � � þ v7 þ v8; ð4Þ
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where

v1 ¼ sinðxþ y þ zÞ
�1=4
�1=4
1=2

0
B@

1
CA; v2 ¼ sinðxþ y � zÞ

�1=4
�1=4
�1=2

0
B@

1
CA;

v3 ¼ sinðx� y þ zÞ
�1=4
1=4

1=2

0
B@

1
CA; v4 ¼ sinðx� y � zÞ

�1=4
1=4

�1=2

0
B@

1
CA;

v5 ¼ sinð2y þ 2zÞ
0

b=2

�b=2

0
B@

1
CA; v6 ¼ sinð2y � 2zÞ

0

b=2

b=2

0
B@

1
CA;

v7 ¼ sinð2xþ 2zÞ
b=2

0

�b=2

0
B@

1
CA; v8 ¼ sinð2x� 2zÞ

b=2

0

b=2

0
B@

1
CA:

ð5Þ

The first thing to notice about the vector fields v1; v2; . . . ; v8 is that each of them is divergence free (as can be
easily checked). That is not a big deal, however, since there are much simpler ways to split the Arter flow

into divergence-free vector fields [15,18]. The truly miraculous thing about the splitting (5) is that each

vector field v1; v2; . . . ; v8 is explicitly exactly integrable! Let us demonstrate this on v2.
The vector field v2 corresponds to the ODE

d

dt

x
y
z

0
@

1
A ¼ sinðxþ y � zÞ

�1=4
�1=4
�1=2

0
@

1
A: ð6Þ

To solve (6), we note that this ODE has the integral (i.e., conserved quantity) I2 ¼ xþ y � z, because

d

dt
ðxþ y � zÞ ¼

�
� 1
4
� 1
4
þ 1
2

�
sinðxþ y � zÞ ¼ 0:

This means that the vector field is constant on orbits and the exact solution of (6) is given by

xðsÞ
yðsÞ
zðsÞ

0
@

1
A ¼ u2;s

xð0Þ
yð0Þ
zð0Þ

0
@

1
A; ð7Þ

where the map u2;s is given by

u2;s

xð0Þ
yð0Þ
zð0Þ

0
@

1
A ¼

xð0Þ
yð0Þ
zð0Þ

0
@

1
Aþ s sinðxð0Þ þ yð0Þ � zð0ÞÞ

�1=4
�1=4
�1=2

0
@

1
A; ð8Þ

i.e., Euler�s method applied to v2!
The integration of v1; v3; . . . ; v8 proceeds completely analogously, using their respective integrals

I1 ¼ xþ y þ z; I3 ¼ x� y þ z; I4 ¼ x� y � z; I5 ¼ 2y þ 2z;
I6 ¼ 2y � 2z; I7 ¼ 2xþ 2z; I8 ¼ 2x� 2z: ð9Þ

With these integrals, it is easily shown that the exact flows ui;s of the vector fields vi are given by Euler�s
method, i.e.,
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ui;s

xð0Þ
yð0Þ
zð0Þ

0
@

1
A ¼

xð0Þ
yð0Þ
zð0Þ

0
@

1
Aþ sviðxð0Þ; yð0Þ; zð0ÞÞ: ð10Þ

An explicit first-order volume-preserving integrator for the Arter flow (1) and (2) is then given by

ws ¼ u1;s � u2;s � u3;s � u4;s � u5;s � u6;s � u7;s � u8;s ð11Þ

and explicit volume-preserving integrators of any order are obtained using composition methods [10,19],

see below.

3. The general case

We now describe our method for a general trigonometric divergence-free vector field

dx

dt
¼ vðxÞ; x 2 Rn; ð12Þ

where the vector field v is a polynomial in sines and cosines of multiples of the variables x1; . . . ; xn:

viðxÞ ¼ PiðfsinðaxÞg; fcosðaxÞgÞ; ð13Þ

where fsinðaxÞg denotes the list

sinða11x1Þ; sinða21x1Þ; . . . ; sinðam1x1Þ; sinða12x2Þ; . . . ; sinða1nxnÞ; . . . ;

and similarly for fcosðaxÞg, and where v is divergence free, i.e.,

Xn
i¼1

ovi
oxi

¼ 0: ð14Þ

A typical term in such a polynomial will have the formY
i;j

sinmijðaijxjÞ cosm
0
ijðbijxjÞ: ð15Þ

As noted (for example) by Hardy [21], this can be expressed as the sum of a finite number of terms of the

form

a cos
Xm
i¼1

Xn
j¼1

ðpijaij

 
þ qijbijÞxj

!
þ b sin

Xm
i¼1

Xn
j¼1

ðpijaij

 
þ qijbijÞxj

!
;

using identities such as the product formulae (3) above. (Here pij and qij are integers satisfying
�mij 6 pij 6mij; �m0

ij 6 qij 6m0
ij.)

Hence v can be expressed in the following simpler form:

vðxÞ ¼
X

k1;k2;...;kn

vk1;k2;...;knðxÞ; ð16Þ

where

vk1;k2;...;knðxÞ ¼ sinðk1x1 þ k2x2 þ � � � þ knxnÞck1;k2;...;kn þ cosðk1x1 þ k2x2 þ � � � þ knxnÞdk1;k2;...;kn : ð17Þ
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Here, c and d are constant vectors. Note (i) that the vectors d are zero in the expansion (5) of the Arter flow,

because the Arter flow is an odd vector field; (ii) the coefficients in the expansion zm ¼
Pm

i¼0 rm;iTiðzÞ, where Ti
is the ith Chebyshev polynomial of the first kind, are known explicitly (cf. for example [25]). Therefore
cosmðxÞ ¼

Pm
i¼0 rm;i cosðixÞ. Similarly for sine functions and Chebyshev polynomials of the second kind.

Hence, the first constructive step in going from (15) to (16) could be to express the product (15) in terms of

Tis and Ujs, followed by an application of standard trigonometric identities; (iii) that the process above can

also be implemented in the case where the vectors k are incommensurate, leading to the class of functions

known as generalized trigonometric polynomials, which in turn belong to the set of almost periodic
functions (in the sense of Bohr) (see [22]).

From the fact that v is source free it follows that

r � v ¼
X
k

k � ck cosðk � xÞ � k � dk sinðk � xÞ ¼ 0 ð18Þ

and hence (since all sines and cosines appearing in the sum are linearly independent)

k � ck ¼ 0 and k � dk ¼ 0 for all k: ð19Þ

Thus it follows readily that each vector field vk given by (17) is nilpotent [16], and is again integrable with

integral Ik ¼ k � x and can hence be integrated exactly using Euler�s method

uk;sðxð0ÞÞ ¼ xð0Þ þ svkðxð0ÞÞ: ð20Þ

An explicit first-order volume-preserving integrator for the vector field (12) is then given by

ws ¼
Y
k

uk;s; ð21Þ

where the product
Q
denotes composition of maps.

An explicit second-order integrator (hereafter referred to as RQ2) is given by the composition

ws=2 � w�1
�s=2, where w is given by (21), and explicit volume-preserving integrators of any order are obtained

using composition methods 1 [10,19].

We get the Hamiltonian case as a bonus! If v above had a Hamiltonian H , then H must have the form

H ¼
X
k

ak sinðk � xÞ þ bk cosðk � xÞ ð22Þ

hence

v ¼
X
k

cosðk � xÞakX � k� sinðk � xÞbkX � k; ð23Þ

where X is the symplectic matrix. The volume-preserving splitting before gives

v ¼
X
k

vk; ð24Þ

where

vk ¼ cosðk � xÞakX � k� sinðk � xÞbkX � k: ð25Þ

1 Since ws is the product of exact flows, its adjoint w
�1
�s is also explicit.
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But in this case vk is a Hamiltonian vectorfield:

vk ¼ XrHkðk � xÞ; ð26Þ

where

Hkðk � xÞ ¼ ak sinðk � xÞ þ bk cosðk � xÞ ð27Þ

and since the integrator uk;s gives the exact flow of vk, it follows that uk;s in this case is symplectic!

4. Numerical experiments

The Robust Quadrature method (RQ2) discussed above will be compared to results obtained using

another second-order volume-preserving integrator employing Feng�s splitting, referred to as FK2. (For
evidence that volume-preserving integrators give superior results, see [18].)

The following 4-dimensional vector field is used: 2

d

dt

x
y
z
w

0
BB@

1
CCA ¼ vðxÞ ¼

X7
i¼1
viðxÞ; ð28Þ

where

v1 ¼ c1 sinðy þ zÞ

1

1

�1
�1

0
BBB@

1
CCCA; v2 ¼ c2 sinðxþ yÞ

1

�1
1

�1

0
BBB@

1
CCCA;

v3 ¼ c3 sinðx� wÞ

1

�1
�1
1

0
BBB@

1
CCCA; v4 ¼ c4 cosðzþ wÞ

1

0

0

0

0
BBB@

1
CCCA;

v5 ¼ c5 sinðx� zÞ

0

1

0

0

0
BBB@

1
CCCA; v6 ¼ c6 cosðxþ yÞ

0

0

1

0

0
BBB@

1
CCCA;

v7 ¼ c7 sinðy þ zÞ

0

0

0

1

0
BBB@

1
CCCA:

ð29Þ

Each of these vector fields has an integral and is ready to be treated as summarized in Eqs. (20) and (21)

above.

2 It can be shown [27] that a large class of 4-dimensional trigonometric vector fields can be written in a similar normal form, using at

most seven split vector fields.
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For FK2 the vector field v is split into the sum of three 2-dimensional volume-preserving parts, A, B and
C, as follows:

A :

_xx ¼ f1;
_yy ¼ �f1;
_zz ¼ 0;
_ww ¼ 0;

8>><
>>: B :

_xx ¼ 0;
_yy ¼ f2;
_zz ¼ f3;
_ww ¼ 0;

8>><
>>: C :

_xx ¼ f4;
_yy ¼ 0;
_zz ¼ 0;
_ww ¼ f5;

8>><
>>: ð30Þ

where

f1 ¼ c2 sinðxþ yÞ;
f2 ¼ c1 sinðy þ zÞ � c3 sinðx� wÞ þ c5 sinðx� zÞ;
f3 ¼ �c1 sinðy þ zÞ þ c2 sinðxþ yÞ � c3 sinðx� wÞ þ c6 cosðxþ yÞ;
f4 ¼ c1 sinðy þ zÞ þ c3 sinðx� wÞ þ c4 cosðzþ wÞ;
f5 ¼ �c1 sinðy þ zÞ � c2 sinðxþ yÞ þ c3 sinðx� wÞ þ c7 sinðy þ zÞ:

ð31Þ

The integrator FK2 is given by the composition

W ¼ As=2 � Bs=2 � Cs � Bs=2 � As=2 ð32Þ

and the five stages As=2, Bs=2 (both twice) and Cs are integrated using the implicit midpoint method,
3 which

is volume-preserving for 2-dimensional systems.

Fig. 1. Global error vs CPU time for the two integrators RQ2 and FK2, for 21 step sizes—starting at s ¼ 0:005 and reducing ex-
ponentially by a factor of 1.1. The system was integrated up to tmax ¼ 200 in each case.

3 Solved using fixed-point iteration.
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The initial point for the calculated orbit is ðx; y; z;wÞ ¼ ð0:1; 0:1; 0:1; 0:1Þ, and the parameter values are
c1 ¼ c2 ¼ �0:1 and c3 ¼ c4 ¼ c5 ¼ c6 ¼ c7 ¼ 0:1.
The comparison of interest is maximum global error vs elapsed CPU time, for a range of step sizes,

calculating up to the final t-value tmax ¼ 200. The code was executed using double precision on a 400 MHz
Macintosh G4.

Beginning with step size s0 ¼ 0:005, the maximum global error and CPU times were computed, and the
step size reduced by a factor of 1.1 (20 times), each reduction followed by a repeat of the computations. The

‘‘exact’’ solution for the error calculations was provided by a fourth-order Runge–Kutta integrator using a
smaller step size (by a factor of 10). The results are summarized in Fig. 1 and indicate that RQ2 performs

better for this problem.
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